Electrochemical Carboxylation of Ketones RCOCH<sub>2</sub>R'
Coupled with CO<sub>2</sub> Reduction by [Ru(bpy)<sub>2</sub>(CO)<sub>2</sub>]<sup>2+</sup>

Koji TANAKA, \* Hajime MIYAMOTO, and Toshio TANAKA\* †

Department of Applied Chemistry, Faculty of Engineering,

Osaka University, Suita, Osaka 565

† Department of Applied Physics and Chemistry, Fukui

Institute of Technology, Gakuen, Fukui 910

Electrochemical carboxylation of  $PhCOCH_3$  and  $C_6H_{10}(O)$  coupled with  $CO_2$  reduction by  $[Ru(bpy)_2(CO)_2]^{2+}$  was carried out in  $CO_2$ -saturated dry  $CH_3CN$ .  $CO_2$  ligated on the ruthenium atom is reduced to  $HCOO^-$  or CO upon the electrochemical reduction of the complex, where  $PhCOCH_3$  and  $C_6H_{10}(O)$  function as a proton source, and the resultant carbanions react with  $CO_2$  to afford the corresponding ketoacids, catalytically.

Recently much attention has been paid to the electrochemical  $\rm CO_2$  reduction catalyzed by transition metal complexes<sup>1)</sup> though most of the reaction products are limited to  $\rm CO$  and/or  $\rm HCOO^{-}.^{2)}$  Electrochemical production of carboxylic acids by the reaction of organic halides with  $\rm CO_2$ , therefore, has been conducted in the presence of catalytic amounts of  $\rm Ni^{3)}$  and  $\rm Pd^{4)}$  complexes under galvanostatic conditions. In viewpoints of utilization of  $\rm CO_2$ , however, the electrochemical carboxylation accompanied by a carbon-hydrogen bond cleavage may be more important than that by a carbon-halogen bond cleavage. Nitrite ion ligated on transition metals is subject to dissimilatory and assimilatory reductions affording  $\rm N_2^{-5}$  or  $\rm N_2O^{-6}$  and  $\rm NH_3,^{5,7}$  respectively. By taking advantage of the strong basicity of  $\rm No_2^{-}$  coordinated to the reduced species of  $\rm [Fe_4S_4(SPh)_4]^{2-}$ , the first catalytic carboxylation of PhCOCH<sub>3</sub> has been succeeded under the controlled potential electrolysis of  $\rm CO_2$ -saturated CH<sub>3</sub>CN containing  $\rm [Fe_4S_4(SPh)_4]^{2-}$ ,  $\rm NO_2^{-}$ , and PhCOCH<sub>3</sub>. The electrochemical carboxylation coupled with  $\rm NO_2^{-}$  reduction

2034 Chemistry Letters, 1988

catalyzed by 2,2'-bipyrizylruthenium complex is also of interest since ruthenium complexes have been elucidated to show high catalytic activity toward the reductions not only of  $\mathrm{NO_2}^{-5}$ ) but also  $\mathrm{CO_2}^{.9}$ ) This study has revealed that  $[\mathrm{Ru}(\mathrm{bpy})_2(\mathrm{CO})_2]^{2+}$  has an ability of catalyzing the electrochemical carboxylation of PhCOCH<sub>3</sub> and  $\mathrm{C_6H_{10}}(\mathrm{O})$  even in the absence of  $\mathrm{NO_2}^{-}$  in  $\mathrm{CO_2-saturated}$  CH<sub>3</sub>CN.

Nitrite ion selectively undergoes a dissimilatory reduction to afford  $N_2$  (Eq. 1) under the controlled potential

$$2NO_2^- + 8H^+ + 6e^-$$
  
 $N_2 + 4H_2O$  (1)



Fig. 1. Controlled potential electrolysis of  $CO_2$ -saturated  $CH_3CN$  containing  $[Ru(bpy)_2(CO)_2]$ - $(PF_6)_2$ ,  $Et_4NNO_2$ ,  $PhCOCH_3$ , and  $Bu_4NBr$  in the presence of molecular sieves 3A at -1.40 V vs. SCE.

electrolysis of  $CO_2$ -saturated dry  $CH_3CN$  (17 cm<sup>3</sup>) containing  $[Ru(bpy)_2(CO)_2]^{2+}$  (16.5 µmol),  $Et_4NNO_2$  (0.52 mmol),  $PhCOCH_3$  (14.1 mmol),  $Et_4NBr$  (1.65 mmol), and molecular sieves 3A as a dehydration agent at -1.40 V vs. SCE. At the same time,  $PhCOCH_2COO^-$ ,  $HCOO^-$ , and CO are formed catalytically (Fig. 1). The latter two apparently result from the reduction of  $CO_2$  (Eqs. 2 and 3). This result

$$CO_2 + 2H^+ + 2e^- \longrightarrow CO + H_2O$$
 (2)

$$CO_2 + 2H^+ + 2e^- \longrightarrow HCOOH$$
 (3)

suggests that  $PhCOCH_3$  functions as a proton source in the reduction not only of  $NO_2^-$  but also of  $CO_2$ , and the main product  $PhCOCH_2COO^-$  is produced by the reaction of the resultant  $PhCOCH_2^-$  with  $CO_2$ . Thus,  $[Ru(bpy)_2(CO)_2]^{2^-}$  can catalyze the electrochemical carboxylation coupled with  $CO_2$  reduction in contrast to  $[Fe_4S_4(SPh)_4]^{2^-}$ , which has no ability of catalyzing  $CO_2$  reduction under the same reaction conditions. This is consistent with the fact that the controlled potential electrolysis of  $CO_2$ -saturated  $CH_3CN$  (17 cm<sup>3</sup>) containing

 $[Ru(bpy)_2(CO)_2]^{2+}$  (19.3 µmol), PhCOCH<sub>3</sub> (20.6 mmol) and  $Bu_4NBr$  (1.94 mmol) at -1.40 V vs. SCE catalytically produced not only HCOOand CO but also PhCOCH2COO (Fig. 2). Similarly, when CO2 reduction was conducted in the presence of  $C_6H_{10}(0)$ in place of PhCOCH3 unless otherwise the same reaction conditions, cyclohexanone-2-carboxylic acid was catalytically produced accompanied by the formation of HCOO and CO. the other hand, the electrolysis of  $[Ru(bpy)_2(CO)_2]^{2-}$  in  $CO_2$ -saturated dry CH<sub>3</sub>CN in the absence of either  $PhCOCH_3$  or  $C_6H_{10}(0)$  resulted in a decomposition of the complex with evolving a trace amount of CO. 10)



Fig. 2. Controlled potential electrolysis of  ${\rm CO_2}$ -saturated  ${\rm CH_3CN}$  containing  ${\rm [Ru(bpy)_2(CO)_2]}$ - ${\rm (PF_6)_2}$ , PhCOCH<sub>3</sub>, and Bu<sub>4</sub>NBr in the presence of molecular sieves 3A at -1.40 V <u>vs.</u> SCE.

It has been elucidated that  $[Ru(bpy)_2(CO)_2]^{2+}$  is an efficient catalyst for the reduction of  $CO_2$  in the presence of various proton sources such as  $H_2O_1^{9a}$  MeOH, PhOH, and  $R_nNH_{4-n}^+$  (n = 2, 3),  $^{9b}$ ) and that  $[Ru(bpy)_2(CO)_2]^{2+}$  and  $[Ru(bpy)_2(CO)(COOH)]^+$  or  $[Ru(bpy)_2(CO)(COO^-)]^+$  are the precursors for the formation of CO and  $HCOO^-$ , respectively.  $^{9a}$  It is concluded, therefore, that  $RCOCH_2R^+$  plays a role of a proton source in the reactions of Eqs. 2 and 3, and the deprotonated  $RCOCH_2R^+$  species reacts with  $CO_2$  to produce  $RCOCH_2R^+COO^-$  (Scheme 1). The present study has revealed that a metal complex with  $CO_2$  and



2036 Chemistry Letters, 1988

 ${\rm CO}_2$  ligands predominantly affords CO and HCOO upon the electrochemical reduction of the complex. On the other hand, when  ${\rm CO}_2$  moiety ligated on a metal is utilized as a base in order to cleave a carbon-hydrogen bond of organic molecules, not only  ${\rm CO}_2$  reduction but also carboxylation of the organic molecules take place catalytically.

This work was supported by a Grant-in-Aid for Scientific Research from Ministry of Education, Science and Culture (No. 61125006).

## References

- 1) E. Fujita, D. J. Szalda, C. Creutz, and N. Sutin, J. Am. Chem. Soc., 110, 4870 (1988), and references cited therein.
- D. L. Dubios and A. Miedaner, J. Am. Chem. Soc., <u>109</u>, 113 (1987); M. Beley,
   J. -P. Collin, R. Ruppert, and J. -P. Sauvage, ibid., <u>108</u>, 7461 (1986);
   D. J. Pearce and D. J. Plether, Electroanal. Chem., <u>197</u>, 317 (1986).
- G. Silvestri, S. Gambino, and G, Filardo, Tetrahedron Lett., <u>27</u>, 3429 (1986);
   G. Silvestri, S. Gambino, G, Filardo, G, Greco, and A. Gluotta, ibid., <u>25</u>,
   4307 (1984).
- 4) H. Torii, H. Tanaka, T. Hamatani, K. Morisaki, A. Jutand, F. Peluger, and J. F. Fauvarque, Chem. Lett., 1986, 169.
- 5) S. Kuwabata, S. Uezumi, K. Tanaka, and T. Tanaka, Inorg. Chem., <u>25</u>, 3018 (1986).
- 6) K. Tanaka, M. Honjo, and T. Tanaka, Inorg. Chem., 24, 2662 (1985).
- 7) W. R. Murphy, K. Takeuchi, M. H. Barley, and T. J. Meyer, Inorg. Chem., <u>25</u>, 1041 (1986).
- 8) K. Tanaka, R. Wakita, and T. Tanaka, Chem. Lett., <u>1987</u>, 1951.
- 9) a) H. Ishida, K. Tanaka, and T. Tanaka, Organometallics, <u>6</u>, 181 (1987); b) H. Ishida, H. Tanaka, K. Tanaka, and T. Tanaka, J. Chem. Soc., Chem. Commun., <u>1987</u>, 131.
- 10) A black precipitate appeared in the electrolysis, and about 30% of CO based on the amount of  $[Ru(bpy)_2(CO)_2]^{2-}$  was confirmed in the gaseous phase.

(Received September 12, 1988)